Microanatomy of the human atherosclerotic plaque \bigcirc LACDR by single-cell transcriptomics

Marie Depuydt¹, Koen Prange², Lotte Slenders³, Tiit Örd⁴, Danny Elbersen³, Arjan Boltjes³, Saskia de Jager³, Folkert Asselbergs³, Gert Jan de Borst³, Einari Aavik⁴, Tapio Lönnberg⁵, Esther Lutgens², Christopher Glass⁶, Hester den Ruijter³, Minna Kaikkonen⁴, Ilze Bot¹, Bram Slütter¹, Sander van der Laan³, Seppo Yla-Herttuala⁴, Michal Mokry³, Johan Kuiper¹, Menno de Winther², Gerard Pasterkamp³ ¹LACDR - Leiden University, NL; ²Amsterdam University Medical Centers - location AMC, NL; ³University Medical Center Utrecht, NL; ⁴A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI; ⁵Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI; ⁶University of California San Diego, US

Background and aim

Atherosclerosis, the main underlying cause of cardiovascular disease and death worldwide, has been extensively investigated in numerous studies over the past decades. Both mouse and human studies have advanced our insights into the cellular composition and function of atherosclerotic plaques. Yet, especially in humans, detailed definition of cells at play in atherosclerosis is lacking and mainly based on a handful of selected markers. In the past year, four papers have shown the benefit of single-cell RNA sequencing in murine atherosclerosis. In our current study, we have applied single-cell RNA sequencing and single-cell ATAC sequencing to a cohort of human carotid atherosclerotic plaques and thereby provide an in-depth characterization of the highly diverse cellular communities in advanced human atherosclerosis.

Figure 5. Macrophage cluster My.0 and My1 exhibit a clear pro-inflammatory phenotype, whereas cluster My2 shows a more foam-cell like phenotype, displaying a fibrosis-promoting phenotype.

Results

Figure 5. scATAC-seq reveals 4 myeloid clusters and 4 T cell clusters that show good agreement with the scRNA-seq clusters

chr3 position (bp)

Figure 6. Pseudobulk genome browser visualization identifies open chromatin of IL-12 in CD1c⁺ dendritic cells.

Figure 7. Pseudobulk genome browser visualization identifies open chromatin of IFNG and TNF in CD4⁺CD28^{null} T cells.

Summary

Acknowledgements

LACDR

Bram Slütter Ilze Bot Johan Kuiper

Amsterdam UMC – location AMC Koen Prange Esther Lutgens Menno de Winther

University of Eastern Finland & University of Turku Tiit Örd Einari Aavik Tapio Lönnberg Minna Kaikkonen Seppo Yla-Herttuala

UMC Utrecht Lotte Slenders Danny Elbersen Arjan Boltjes Saskia de Jager Folkert Asselbergs Gert Jan de Borst Sander van der Laan Michal Mokry

School of Medicine, University of California San Diego Christopher Glass

