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BACKGROUND
ABCA7 is one of the most compelling risk genes for Alzheimer’s
disease (AD) to come out of genome-wide association studies
(GWAS). However, it remains unclear what the exact function is of
ABCA7, its isoforms and its role in AD pathogenesis. We conducted a
pilot study on the use of Cartana’s in-situ sequencing (ISS) to study
spatial expression of ABCA7 using post-mortem brain samples.

METHODS

Brain tissue blocks, obtained from the Brain Bank of the Born-Bung
institute, were cryosectioned coronally with a cryomicrotome into
16 µm slices and further stored at -80°C. All equipment was treated
with RNaseZAP to prevent RNA degradation. Samples were then
sent to CARTANA for library preparation, sequencing and imaging.

RNA is fixated in the tissue and reverse transcribed in-situ. Padlock
probes then hybridize to the transcripts of interest and are
amplified with rolling circle amplification (RCA). Fluorescence-
labeled adaptor probes are hybridized and imaged, creating a
tissue map.

METHODS STUDY COHORT
Sample-ID Tissue Diagnosis

Sample 1 BA10, HC, CB AD

Sample 2 BA10 AD

Sample 3 BA10, HC AD

Sample 4 BA10, HC AD

Sample 5 BA10, HC CON

RESULTS

Figure 1: 
Overview of 
tissue maps for 
the different 
sections, and 
the probe 
legend. 

A custom assay was designed including 9 probes for different ABCA7 isoforms
(canonical, intron 6 retention, startcodon at exon 7, exon 19 and exon 30), 8 for
AD-related genes of interest (including APP, APOE and TREM2), and 15 probes
for cell-type markers (three per cell type; astrocytes, endothelial cells, neurons,
oligodendrocytes and microglia). Furthermore, DAPI staining was performed to
visualize nuclei. Two types of output data were generated: the coordinates of
the nucleus, as determined by DAPI staining, and coordinates of the probes.
Using the probe data, we computed probe count per section, tissue and
diagnosis. Next, we performed cell segmentation based on DAPI staining using
the Watershed method (Fiji script in ImageJ) for all cells and assigned probes to
cells for two samples, followed by determination of the number of cells and co-
clustering of probes. Finally, we also performed spatial clustering on the data,
using Ripley’s K in the R package spatstat to study co-clustering.



RESULTS RESULTS

PROBE DATA ANALYSIS
Probe counts per section were normalized to size, resulting in
a density of probe counts. The average number for this was
2.1 ± 2.1 reads per 400 µm² ranging from 0.6 (sample-2 HC) to
7.0 reads per 400 µm² (sample-4 HC), indicating a lot of
variation between the sections. Tissues were further divided
into subregions where the highest density of probes was
found in the fimbria region of the hippocampus (sample-4)
and lowest in the white matter of the cerebellum (sample-1).
The probe count for the astrocyte marker GFAP (green in
figure 2) was highest in almost al sections, ranging from 17.4
to 93% of all transcripts, with the exception of the granular
layer of the cerebellum (sample-1) (where SLC12A5 was
highest), white matter in sample-5 BA10 (MOG), choroid
plexus in sample-1 HC (APP) and white matter in sample-5
BA10 (APP). This emphasizes one drawback we encountered
with the data: the probe count was highly dependent on
probe sensitivity and thus absolute probe counts are not
quantifiable.

Figure 2: Close-up of sample-3 BA10 with 
DAPI stains (grey), cell segmentation (red) and 
probes (green=GFAP, orange=PSEN2, 
red=APOE, purple=APP, blue=ABCA7). 
Average density is 1,28 reads per 400 µm²

CELL SEGMENTATION
Cell segmentation was performed
for all samples, but the probes were
only assigned to cells for sample-1
and -3 BA10. The average number
of cells per sections is 97,872
ranging from 30,553 to 163,544.
Segmented data shows that a
majority of cells are empty. On
average 46.45% of cells have more
than 1 transcript with an average
0.96 ± 1.3 transcript per cell. This
sparsity, also seen on figure 2, does
complicate some of the
downstream analysis.Figure 3: Transcripts per cell in sample-3 BA10

COMPARISON METHODS FOR CO-CLUSTERING

With both cell segmentation and spatial clustering co-clustering can be studied. To investigate which
method is better, we compared the method in their ability to discriminate co-clustering of cell markers of
the same cell type (positive pairs) to co-clustering of cell markers of a different cell type (negative pairs).
We chose to look at SLC12A5, STMN2 (both neuronal markers), MOG, TF (both oligodendrocyt markers)
and, ALDH1L1 and FGFR3 (both astrocytes markers). In each region 10 random regions of a certain size
were selected and co-clustering was calculated by determining the odds ratio (OR) (cell segmentation) or
Kcross value (Spatial clustering).

Figure 4: Comparison of sensitivity for co-clustering 
between cell segmentation (left) and spatial 
clustering right.

Spatial clustering determines how well
data points of a specific type cluster
together. A high Kcross value means
higher clustering degree.

Co-clustering can be studied with spatial clustering and cell segmentation. To investigate which method is
better, we compared their ability to discriminate co-clustering of cell markers of the same cell type
(positive pairs) to co-clustering of cell markers of a different cell type (negative pairs). We chose to look at
SLC12A5, STMN2 (both neuronal markers), MOG, TF (both oligodendrocyte markers) and, ALDH1L1 and
FGFR3 (both astrocytes markers). In each region 10 random regions of a certain size were selected, and for
regions with sufficient probe count co-clustering was calculated by determining the odds ratio (OR) (cell
segmentation) or Kcross value (Spatial clustering). The smaller the region where discrimination is possible,
the higher the sensitivity.

Both methods seemed to have a comparable sensitivity with the sensitivity of the methods mostly seeming
to depend on quality of the data, such as number of transcripts per cell (cell segmentation) and density
(spatial clustering).

20 µm

Figure 5: Comparison 
sensitivity of cell 
segmentation (up) (8 
and 7 regions) and 
spatial clustering 
(bottom) (10 regions) 
for co-clustering 
discrimination in 
sample-3 BA10.



RESULTS RESULTS

CELL TYPE ENRICHMENT WITH SEGMENTATION DATA

ABCA7 EXPRESSION IN SUBREGIONS
In each section ABCA7 probes were taken together and expression was normalized against total
transcript count. Overall ABCA7 had highest expression in CB, followed by BA10 and HC with the
difference between the last two significant (p=0.05). Expression in controls sections was also slightly
higher. For the subregions, ABCA7 expression is highest in the choroid plexus, followed by the granular
layer of the cerebellum.

Figure 6: ABCA7 normalized 
expression in the different 
brain subregions.
WM=white matter
GM= grey matter
CA= CA layers (CA1-CA3)
Fim= fimbria
GyrDent= gyrus dentus
ChorPlex=choroid plexus
Gran= granular layer
Molec= molecular layer
Purkin = purkinje cells

Sample Tissue OR Cell-type Probe P-value

Sample 1 BA10 1.16 (1.06-1.26) Neuron APP 4.99*10-3

Sample 3 BA10 1.43 (1.39-1.47) Neuron APP 1.17*10-132

Sample 3 BA10 1.35 (1.10-1.64) Neuron ABCA7 3.21*10-2

Sample 3 BA10 1.49 (1.38-1.61) Neuron MAPT 3.16*10-24

Sample 3 BA10 5.54 (2.63-10.55) Microglia TREM2 7.08*10-6

Co-localization of cell-
type markers with
probes within a cell was
calculated using logistic
regression in sample-1
and -3 BA10. For
sample-1 only APP was
found to be significantly
enriched in neurons, for
sample-3 four probes
were enriched.

CELL TYPE ENRICHMENT WITH SPATIAL CLUSTERING DATA

Figure 7: Spatial clustering of ABCA7, APP and TREM2 with cell type markers with different colors for different sections.

Although this technique, and its analysis, still need further optimization and fine-tuning, our data
proves it could be a useful technique to study AD-related genes. Moreover, spatial clustering also
proves to be a promising technique to study this type of data. Our results highlight that probe
design is a critical step, and pinpoint neurons and the choroid plexus as being of specific interest
for further ABCA7 studies.

CONCLUSION

Overall the results of cell type enrichment with segmentation data point out certain flaws of this data
mining technique. There is a large number of empty cells and only a limited amount of cells have
multiple probes. Moreover, only few probes are significantly enriched in certain cell-types, with only APP
enrichment found in both sections. Also looking at spatial clustering for cell type enrichment could help
overcome this problem.

Another way to look at cell type enrichment is by using Kcross and spatial clustering. A higher Kcross value
for co-clustering of the transcript of interest with certain cell type marker is indicative of expression in this
cell type. Kcross is corrected for regions size.

Using spatial clustering we can confirm known cell
type expressions such as TREM2 in microglia, APP
in neurons (p=0.034), MAPT in neurons (p=0.037)
and TYROBP in microglia. ABCA7 has been
speculated to have a function in neurons or
microglia. Our spatial clustering (and segmentation
data) both seem to highlight neuronal functioning.
Noticeably, although we corrected for size,
sections are still stacked according to size, which
increases variability and complicates
demonstrating significance.


