Transcriptomic signatures of genomic instability during human preimplantation embryo development characterized at single cell resolution by G&T-seq

Elia Fernandez Gallardo¹, Alejandro Sifrim¹, Joel Chapell², Jonas Demeulemeester¹, Jennifer Clara Herrmann¹, Robin Vermote¹, Alison Kerremans¹, Daniel Brown¹, Koen Theunis¹, Jens Van Herck¹, Katy Vandereyken¹, Joris Vermeesch³, Sophie Debrock⁴, Vincent Pasque² and Thierry Voet¹.

¹Laboratory of Reproductive Genomics, KU Leuven; ²Stem Cell Institute Leuven; ³Laboratory for Cytogenetics and Genome Research, KU Leuven; ⁴Leuven University Fertility Centre, UZ Leuven.

INTRODUCTION

- **Genomic instability** is common in human preimplantation embryos and is the leading cause of pregnancy loss, but still its **causes and consequences remain unknown**.
- It is characterized by the frequent occurrence of **mitotic errors** in the first cell divisions after fertilization and results in genetic **mosaicism** in the embryo.
- The diverse outcomes of embryo mosaicism and its high prevalence represent a **challenge** when interpreting results of **preimplantation genetic diagnosis**.

Tšuiko and Fernandez Gallardo et al., 2020 Reproduction; Van-Echten Arends et al., 2011 Human Reproduction; Popovic et al., 2018 Human Reproduction; Popovic et al., 2019 Hum Reproduction; Greco et al., 2015 New England Journal of Medicine; Santaguida et al., 2015 Nature Reviews.

AIM

Investigate the impact of genetic abnormalities on cellular phenotypic states and development of the early human embryo using single-cell multi-omics for parallel genome and transcriptome sequencing (G&T-seq).

KULEUVEN Image: Construction WidenLife Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction

MATERIAL AND METHODS

RESULTS

GENOMIC ANALYSES

Single-cell genome-wide CNV profiles of preimplantation human embryos

RESULTS

TRANSCRIPTOMIC ANALYSES

Gene regulatory landscape and cell differentiation of human preimplantation development

INTEGRATIVE ANALYSES

Lineage allocation of aneuploid cells

Aneuploid cells distribute equaly between lineages and along development.

RESULTS

Direct and indirect dosage effects are evident after embryonic genome activation and vary with transcriptional activity along pseudotime.

INTEGRATIVE ANALYSES

Global effects of aneuploidy

significant delay in pseudotime.

Negative correlation between pseudotime (x) and % of abnormal genome (y) in cells within the same

SUMMARY

- Recapitulation of transcriptional signatures of embryo development using G&T. ٠
- Genomic instability effects in general are more subtle than expected during preimplantation development.
- Aneuploidy rate is similar than previously detected with stand alone single cell genome analysis in human embryos.
- Complete gene regulatory landscape of human preimplantation embryo development.
- Common effects of aneuploidy observed show a developmental delay of cells with abnormal genome.
- First time description of when **direct and indirect gene dosages** occur and their effect size on genes prior, • during and after EGA.