Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states

Federico Gaiti, PhD **Postdoctoral Fellow**

Landau Lab

Emerging Technologies in Single Cell Research 2020

Multi-omics single-cell sequencing of primary human gliomas separates malignant vs. non-malignant cells, and enables high-resolution copy number alteration mapping

- **Unidirectional hierarchies?**
- **Epigenetic encoding of cells states?**

Plasticity?

- Heritability of cell states?
- Transition dynamics of cell states?

Multi-omics single-cell sequencing of primary human gliomas separates malignant vs. non-malignant cells, and enables high-resolution copy number alteration mapping

Unidirectional hierarchies?

IDH-wt glioblastoma

Plasticity?

Epigenetic encoding of cells states?

- Heritability of cell states?
- Transition dynamics of cell states?

1,728 single-cell RNA + DNA methylomes + somatic mutation capture

Joint RNA and DNAme (Gaiti et al., Nature 2019) GBM (n= 7 patient samples) IDH-MUT (n= 4 patient samples)

Inference of copy number aberrations (CNAs) from single-cell DNAme

CNA inference by single-cell DNAme enables detection of genetic sub-clones

■ MGH105A ■ MGH105C MGH105B MGH105D

Multi-omics single-cell sequencing of primary human gliomas separates malignant vs. non-malignant cells, and enables high-resolution copy number alteration mapping

Unidirectional hierarchies?

MES-like

Plasticity?

- **Epigenetic encoding of cells states?**
- Heritability of cell states?
- Transition dynamics of cell states?

1,728 single-cell RNA + DNA methylomes + somatic mutation capture

Joint RNA and DNAme (Gaiti et al., Nature 2019) GBM (n= 7 patient samples) IDH-MUT (n= 4 patient samples)

Collaboration with Mario Suva lab - MGH/Broad Institute

Inference of copy number aberrations (CNAs) from single-cell DNAme

CNA inference by single-cell DNAme enables detection of genetic sub-clones

■ MGH105A ■ MGH105C MGH105B MGH105D

Stem-like GBM cells exhibit PRC2 targets hypomethylation compared with more differentiated cell states within the same GBM patient samples

Transcriptional cell states in GBM DMRs at promoters (n=15,218) GBM & OPC-like scores) AC-like scores)|+1) Hypo-methylated in AC / MES-like Hypo-methylated in NPC / OPC-like • NPC-like OPC-like AC-like Log₂(|(NPC { -(MES & A 5 MES-like - log₁₀(P) 2 n= 844 cells Log₂(|(NPC | OPC-like scores) -(MES | AC-like scores)|+1) MES-like 0 **DNAme** AC-like -25 at promoters NPC-like DNAme difference (%) OPC-like • Benporath (PRC2 targets), adj P = 0.001 • Verhaak (GBM classical), adj P = 0.014 MEST Mann-Whitney U P

PRC2 targets are hypo-methylated in stem-like cells

CDX2

FGF3

FGF5

HOXD8

GATA6

FOXL1

ESPN

POU4F2

GABRA4

FOXD2

25

PRC2-target genes expression

Cell state transition dynamics inference from lineage tree architectures reveal higher cellular plasticity in GBM compared to a more stable differentiation hierarchy in IDH-MUT

Projection of genotype and cell state identity onto lineage histories of glioma cells

Cell state transition dynamics inference from lineage tree architectures reveal higher cellular plasticity in GBM compared to a more stable differentiation hierarchy in IDH-MUT

Unidirectional developmental hierarchy

- Glioma cellular states are encoded epigenetically
- PRC2 as a key switch in the differentiation of malignant GBM cell states
- Cancer cell states are heritable
- GBM exhibits higher cellular plasticity (bidirectional) vs. more stable differentiation hierarchy in IDH-MUT (unidirectional)

- Glioma cellular states are encoded epigenetically
- PRC2 as a key switch in the differentiation of malignant GBM cell states
- Cancer cell states are heritable
- GBM exhibits higher cellular plasticity (bidirectional) vs. more stable differentiation hierarchy in IDH-MUT (unidirectional)

Epigenetic plasticity

Plastic bi-directional developmental hierarchy

• Challenge to glioma stem-like cell targeting paradigm? • Cell state targeting? • Cell transition targeting?