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Background
Since most of the genetic variations fall in non-
coding regulatory regions of the genome, and the 
effect of environmental influences are infeasible to 
measure comprehensively, it is highly important to 
use predictive regulatory models which help 
interpret the effect of genetic and epigenetic 
variation on cellular response to external signals. 
To address this, we propose a framework for 
building a unified, unbiased regulatory network 
using cell-type and condition-specific edges 
subjected to a universal benchmarking strategy.
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Core GRN

Phase1: Overview of GRN reconstruction 
using ATACseq and RNAseq data

Phase2: Overview of GRN Prediction Model. 
In this phase, we constructed a model based 
on GRN to predict differential expression 
values between two conditions.

Phase3: (A) evaluation of GRN using the 
prediction model and compare it with edge-
specificity control. (B) Benchmarking and 
comparing different GRNs based on the 
prediction model. (C) Pruning GRN using 
important TFs and TF-Gene connections 
which results in a smaller but more significant 
GRN.
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Human TFs (~1000)
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We construct an unbiased unified regulatory network, based on a collection of 
cell-type specific models, which will enable us to study general and cell-type 
specific regulatory mechanisms. 
The network has three types of nodes: TFs, regulatory elements, and genes. 
These are connected by two types of edges: trans-edges (TF to regulatory 
element) and cis-edges (regulatory element to target gene). 

The key point of our approach is that we integrate cis- and trans-edges 
inferred from multiple complementary methods and thus create an unbiased 
unified regulatory network.

Here we proposed a novel benchmark based on assessing the added 
values of regulatory networks for predicting cell-type specific 
expression response to perturbations.  
Briefly, we train a (RF) model to learn the coefficients for each TF, in 
predicting DEG for all genes, based on the TFs-gene links in each 
specific network. 
We are able to train this model for each network (including 
randomized versions) separately, and compare their performances. 
This will provide a network-specific score of predictive value for a 
specific differential expression response.
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Different Peak-Gene FDR
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Different TF-Peak FDR

(a) R squared for predicting differential expression between resting and LPS stimulated naive CD4+ T-cells 
using real Naive network vs random network. (b) Optimizing TF-peak and Peak-Gene FDRs based on the 
prediction model. (c) Specificity of GRN; Naive network cannot predict DE for other CD4+ subcelltypes 
properly. (d) Comparison between different types of networks. (e) R-squared (y-axis) is shown for predicting 
differential expression between subtypes of AML (left) and resting vs LPS stimulated naive CD4+ T-cells 
(right) based on models trained on different cell-type specific networks (x-axis). In both cases, only the cell-
type specific network is predictive. Controls include overfitting: learned on permuted differential expression 
values (green), and edge-specificity: learned on network with randomized edges (red).
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selected genes (e.g. (Fulco et al., 2019; Schraivogel et al., 2020)). In addition, we will collaborate with groups 
within IGVF that will perform such assays. For example we agreed to collaborate with Lars Steinmetz (see 
LOS), who has developed targeted perturb-seq (TAP-seq, (Schraivogel et al., 2020)), which can interrogate 

the effect of thousands of regulatory elements (using CRISPRi) on hundreds of gene (using targeted 
scRNA-seq). They plan to apply TAP-seq to iPSC-derived cardiovascular cells, for which we have already 
established a regulatory network (Sub-aim 1.2). In addition, our models will help guide strategies for perturb-
seq type experiments for other IGVF groups by prioritizing genes and enhancers of interest.  

We further expect that groups in IGVF will measure chromatin activity upon perturbation of TFs, e.g. in 
CROP-seq type assays (Datlinger et al., 2017) that specifically target TFs, followed by scATAC-seq or joint 
scATAC/RNA-seq. We will collaborate with these groups, providing context-specific prioritizing of TFs, and 
offer integration of the resulting trans-edges into our framework. 

We will make use of genetic variants as natural perturbation of regulatory elements. Specifically, 
we will link regulatory elements to genes if they harbor a SNP that influences the expression of a nearby gene. 
Especially if the lead SNP (variant that has the largest effect) is located in a nearby enhancer, we can assume 
that this enhancer influences the expression of the gene. For this, we will leverage data produced by existing 
consortia, such as GTEx (GTEx Consortium, 2020), IHEC (Cell editorial team, 2016), and eQTLGen (a recent 
metaanalysis on blood eQTLs (Võsa et al., 2018)). Annique Claringbould (key personnel) has been co-

leading the eQTLGen consortium, thus providing immediate access and expertise to include these data. 
Quality assessment of networks: for each regulatory network from Sub-aims 1.1-1.3 we will assess: 

● Within-network robustness and reproducibility by reconstructing them based on subsets of samples  
● Batch-effect (Fig 4), which are 

expected to result in positive and 
negative correlations between 
activity of regulatory elements and 
gene expression, while real links 
will only be positively correlated. 
Thus, we will compare p-value 
distributions of positive (signal) 
and negative (noise) correlations 
and QC fails if signal <= noise 

● Edges specificity by always 
comparing performance of real vs randomized networks (reconstructed from shuffled nodes). 

Once they pass QC, these networks will be integrated into a unified network (in our current implementation a 
specific object in R). We will keep track of the origin of their edges through a metadata object linked to each 
edge. Our pipeline will output diagnostics plots and descriptive statistics, and allows extraction of specific 
networks based on user-defined parameters (e.g. requiring a certain FDR, or a specific cell type, etc.) 
Specific Aim 2: Build Evaluation Framework to Test and Interpret Context-specific Phenotypic 
Predictions Based on Regulatory Network Models 
One of the biggest challenges once a regulatory network is inferred, is to assess how well it captures known 
biology and how useful it is to investigate new biology. The community currently lacks comprehensive ground-
truth data and best-practice benchmarking strategies for assessing regulatory networks. And, since the 
performance of any model depends on the data it is benchmarked against (Chen and Mar, 2018), current 
regulatory network models are essentially incomparable. Therefore, a key delivery we expect from the IGVF 

modeling groups is a standardized benchmarking strategy. Our proposal will extensively contribute 
towards this goal and our ultimate goal within IGVF is to provide the community with network models that serve 
as a useful and trustworthy resources for investigating regulatory links and mechanistic interpretation. To 
achieve this, we propose a multidimensional benchmarking strategy that follows the principle of “all models 
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Figure 4: Distribution of p-values from correlations between peaks and genes (within 250kb) for AML, CD4+ 
and brain-speci!c networks. If more signal in negative than in positive correlations, QC failed.

Raw pvalue of peak-gene 
 correlation

(a) A gene regulatory network constructed 
using 132 samples from CD4+ Naive T-
cells. (b) Distribution of p-values from 
correlations between peaks and genes 
(within 250kb) CD4+ networks. If more 
signal in negative than in positive 
correlations, QC failed. (c) Number of TF-
peak-gene links in real vs permuted GRN.

TF-Peak FDR : 0.2  
Peak-Gene FDR: 0.1 
No of TFs - 174 
No of peaks - 3589 
No of genes - 3362 
Total edges - 12862
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(a, b) TF Importance: Different Variable Importance Measures are available for Random Forest. We used debias impurity-based variable importance 
measure to extract important TFs. (a) Important TFs sorted by their scores in Naive CD4+ prediction model. (b) Important TFs in AML prediction models. 

(c) Core GRN; GRN constructed only for small subset of important TFs, using only high quality connections. The comparison between Core and default 
network shows an improvement in AML and Naive dataset.
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Conclusion
• Evaluation Model shows real TF-Genes 

connection has been captured by our 
GRN. 

• Our GRNs are cell type specific, as 
evidenced by the fact that they cannot 
learn differential expression in for other 
cell types. 

• For each specific cell type GRN, small 
number of TFs are more important that 
others which can be further investigated. 


