
Continuous Hopfield Networks (CFN)

Here we model the dynamics of high-dimensional 
regulatory genomic circuits as a Continuous Hopfield 
Network [1].

Energy Function

The CHN is endowed with an energy function for each state of the network, and, in the case 
W is a symmetric matrix, the stored states of the system correspond to local minima of 
this energy function.
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Introduction Methods
Recent development in the analysis of transcriptional 
regulation (Velocyto, scVelo) has made possible the 
estimation of RNA velocity and kinetic rates from 
scRNASeq data [2,3]. Yet, reconstructing the regulatory 
pathways underlying cellular processes remains a daunting 
challenge. Taking inspiration from Waddington, here we 
take an inverse approach and recover such networks from 
the cellular landscape they shape, using scRNASeq data.
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Hill functions

The gene dynamics is represented as a CHN, 
interacting via the W matrix, and using 
"biological" sigmoid Hill equations as 
transfer functions, modeling the switching 
between ON and OFF states. Where the 
dissociation rates ki are inferred from the 
data as the steady state limit.

The exponent, n, controls the steepness of 
the change in the sigmoid function. 
Throughout this study a fixed exponent, n=4, 
is used.

Inference of W EvolutionExplanation of the model

Degradation rate and Steady-state limit

The degradation rates, 𝛾i ,  and steady state 
limit for each gene are obtained from the 
preprocessing of the data with scVelo.

Asynchronous evolution

The system is evolved as a Neural Network in 
which the states are updated stepwise and 
asynchronously, i.e., at each time-step only one 
gene is updated. In this scenario, at each time 
step the expression of every other gene 
remains constant, thus, the system, consisting 
of only the differential equation for the evolving 
gene, is solved numerically every time step.

The CHN model for the system can be written 
in a vectorial form, from here, the matrix, W, 
and the bias vector, I, can be approximated 
from the data taking the pseudoinverse of the 
augmented matrix of the ON/OFF gene states.

The following plots are generated using the 
Megakaryocyte-Erythroid Progenitor (MEP) cell 
cluster from an in-house generated 
hematopoietic differentiation data set.



Symmetric-Antisymmetric decomposition

Partial derivatives of the energy

Decomposition of the Flux

Orthogonal-Residual decomposition

When the gradient of the energy function is taken, it can be 
noted that a factor of the partial derivatives corresponds to 
the symmetric part of the differential equation driving the 
system. When the matrix, W, is symmetric, the energy 
function assimilates a Lyapunov function for the system.

Inspired by this fact, two different decompositions of the 
flow driving the system are made. First, separating the 
system into the antisymmetric part of W, and the 
symmetric part. Second, separating the system into the 
gradient of the energy function, and the residual part.

The symmetric/orthogonal part drives the system to the 
local minima of the energy, while the 
antisymmetric/residual part drives the system out of them.



Then, among the genes with a high Z-score we 
picked the top 10 with the highest 
predictivities for each fate. As shown in the 
equation below the biases for the selected 
genes are modified and the system is evolved 
from the beginning with the corresponding 
modified biases.

Predictivity and Reprogramming Conclusions

Cluster 1 HSP90AB1 TOP2B PLAUR PSME2 LY86 USP1 EZH2 RORA IKZF2 LST1

Cluster 2 HSP90AB1 LY86 TOP2B RNF152 OLFM3 SLBP MED12L PLAUR LIF HBEGF

Following the method by [4] to calculate the 
predictivity of a given cell fate, first the 
covariance matrix of the fates is calculated, and 
then used to calculate the corresponding 
predictivities. 𝜂i

𝜇, corresponds to the predictivity 
of gene i over cell fate 𝜇.

A generalized framework for the construction of 
the energy field of a high dimensional biological 
system without having governing equations of 
the system has been formulated in this paper. 
Moreover, our results contribute to a deeper 
understanding of non-gradient cellular 
dynamical energy fields of biological systems 
and provide a way for steering a biological 
system towards the desired direction.
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