

Cell type-specific vulnerability to traumatic brain injury

Bielefeld P^{&2}, **Martirosyan A^{&*1}**, Meerhoff G², Poovathingal SK ¹, Reijner N², **Nilges B^{§3}**, Bogdoll A³, Kashikar N³, Belgard TG^{4,5}, Holt MG^{#1}, Fitzsimons CP^{#2}

¹VIB-KU Leuven Center for Brain and Disease Research, Belgium

² Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands

³ Resolve Biosciences GmbH, Germany

⁴ Bit Bio, United States

⁵ The Bioinformatics CRO , United States

* araks.martirosyan@kuleuven.vib.be

§ benedikt.nilges@resolve-biosciences.com

& These authors contributed equally

Corresponding authors

Introduction

In 50% of cases Traumatic Brain Injury (TBI) causes cognitive impairment = hippocampal dysfunction.

Controlled cortical impact model

TBI results in

Reactive astrogliosis in hippocampus, as confirmed by GFAP staining.

Increase in the number of immature neurons in DG, as confirmed by DCX staining. DCX+ cells are classified as in Plümpe et al, BMC Neurosci 2006.

Impaired spatial learning, as confirmed by Morris Water Maze behavioral test.

Dysregulation and aberrant migration of newborn neurons [Neuberger et al, Stem Cell Rep 2017, Villasana et al, eNeuro 2015, Ibrahim et al Scientific Reports 2016].

Research questions

How does TBI affect Neural Stem and Progenitor Cells (NSPCs) and their immature progeny?

How does the cell type positioning alter?

Single cell whole transcriptome analysis

The workflow

FACS isolation of GFP+ stem and progenitor cells.

Single cell RNA-seq by 10X v3 Chromium technology.

Clustering ~8000 high quality single cells by Seurat

algorithm [Butler et al Nat Biotechnol. 2018] reveals:

- 1. Astrocytic lineage [A...]
- 2. Neuronal lineage [N...]
- 3. NSC-like cells NSC1/2
- 4. RG-like cells

Differential gene expression analysis reveal a number of up/down regulated genes in each of the subpopulations:

Resolve Biosciences: 100-plex in situ transcriptomics analysis*

* Poster: Quantitative spatial analysis of 67 genes to study the effect of amyloid pathology in Alzheimer's Disease (AD)

- 100 high level cell type, differentially expressed and up/down regulated genes are chosen for staining.
- 2 Sham and 2 TBI mice hippocampi (including DGs) are stained for chosen markers.
- Predicted NSPCs are found scattered in DG both in TBI and Sham conditions.

-5

UMAP 1

10

Expected 5 value 2 Differential positioning of cell types is observed between Sham and TBI mice hippocampi and surrounding tissue.

Conclusions

- Neurogenesis is activated after TBI, however the number of astrocytes drops, which may lead to dysfunction of newborn neurons.
- Resolve Biosciences staining validates the presence of NSPCs subtypes in DG and reveals differential positioning of cells between Sham and TBI mice hippocampi and surrounding tissue.

Future work

Investigate the molecular signatures of astrogliosis and neurogenesis observed after TBI.

Reveal the identity of spatially altered cell types.