Single-cell Genome-and-Transcriptome (Gtag&T) sequencing without upfront whole-genome amplification reveals cell state plasticity of melanoma subclones

Koen Theunis^{1,*}, <u>Sebastiaan Vanuytven^{1,*}</u>, Florian Rambow², Daniel Brown³, Michiel Van Der Haegen¹, Oskar Marin-Bejar², Aljosja Rogiers², Nina Van Raemdonck², Jonas Demeulemeester¹, Alejandro Sifrim¹, Jean-Christophe Marine² & Thierry Voet^{1,4}

¹ Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; ² Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; ³ Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia, ⁴ Single-cell Genomics Centre, Wellcome Sanger Institute, Hinxton, UK.

*These authors contributed equally to this work

Gtag: a method for direct library preparation of single cell genomes without upfront whole-genome amplification (WGA)

Gtag&T reduces the cost (3X) in comparison to G&T, while increasing breadth of coverage and reducing noise

Profiling of a Melanoma PDX model using G(tag)&T before treatment and at minimal residual disease reveals the presence of 3 subclones and focal amplicons at chromosome 13 and 22

- 0.006x coverage per single cell (= 400,000 mapping reads)
- Copy-number calling in bins of 500.000 mappable positions
- Presence of 3 subclones
- Focal amplicons on chromosome 13 and 22

- Focal amplicon heterogeneity (10.000 mappable positions):
 - Presence
 - Copy-number
 - Size
- Breakpoint detection at near-basepair resolution

- > Chr13 amplicons: gene with (sub)clonal gene dosage effect or no effect at all
- > 22q11.21 amplicon: majority of genes have clonal gene dosage effect
 - LZTR1 & THAP7 are located on segment with lower copy-number in subclones A & B
 - > PIK4A: subclonal effect due to epigenomic effect

Phylogenetic reconstruction of tumour evolution with transcriptomic information at single-cell level with Gtag&T

Limited resolution and accuracy of transcriptome-based DNA copy number inference methods

- Cell states of Rambow et. al (2018) were assigned based on the transcriptome (Invasive, NCSC, SMC & Pigmented)
 - ✓ Absence of NCSC state in subclone C
 - ✓ SMC & Invasive state present in all subclones
- Enrichment of subclone C at MRD
- > Enrichment of amplicons in subclone C at MRD

- InferCNV was used to obtain CNAs based on the transcriptome information and compared with the scDNA data from G(tag)&T
 - ✓ Sensitivity: 48%
 - ✓ Specificity: 90%