Single-cell Genome-and-Transcriptome (Gtag\&T) sequencing without upfront whole-genome amplification reveals cell state plasticity of melanoma subclones

Koen Theunis ${ }^{1, *}$, Sebastiaan Vanuytven ${ }^{1, *}$, Florian Rambow ${ }^{2}$, Daniel Brown ${ }^{3}$, Michiel Van Der Haegen ${ }^{1}$, Oskar Marin-Bejar ${ }^{2}$, Aljosja Rogiers ${ }^{2}$, Nina Van Raemdonck², Jonas Demeulemeester ${ }^{1}$, Alejandro Sifrim ${ }^{1}$, Jean-Christophe Marine ${ }^{2}$ \& Thierry Voet ${ }^{1,4}$
${ }^{1}$ Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; ${ }^{2}$ Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; ${ }^{3}$ Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia, ${ }^{4}$ Single-cell Genomics Centre, Wellcome Sanger Institute, Hinxton, UK.
*These authors contributed equally to this work
Gtag: a method for direct library preparation of single cell genomes without upfront whole-genome amplification (WGA)

Gtag\&T reduces the cost (3X) in comparison to G\&T, while increasing breadth of coverage and reducing noise

$>0.006 x$ coverage per single cell (= 400,000 mapping reads)
$>$ Copy-number calling in bins of 500.000 mappable positions
> Presence of 3 subclones
> Focal amplicons on chromosome 13 and 22

- Presence
- Copy-number
- Size
> Breakpoint detection at near-basepair resolution

22q11.21 amplicon shows clear gene dosage effects and is reversely correlated with expression of pigmentation markers

Chr13

Phylogenetic reconstruction of tumour evolution with transcriptomic information at single-cell level with Gtag\&T

Limited resolution and accuracy of

 transcriptome-based DNA copy number inference methods
> Cell states of Rambow et. al (2018) were assigned based on the transcriptome (Invasive, NCSC, SMC \& Pigmented)
\checkmark Absence of NCSC state in subclone C
\checkmark SMC \& Invasive state present in all subclones

> InferCNV was used to obtain CNAs based on the transcriptome information and compared with the scDNA data from $G(t a g) \& T$
\checkmark Sensitivity: 48\%
\checkmark Specificity: 90\%
> Enrichment of subclone C at MRD

- Enrichment of amplicons in subclone C at MRD

