

جامعة الملك عبداللم للعلوم والتقنية King Abdullah University of Science and Technology

Deep characterization of the cellular diversity in the bone marrow microenvironment

Jin Ye¹, Itziar Cenzano Armendáriz³,Xabier Martinez-de-Morentin², Miren Lasaga-Goyeneche², Isabel Calvo Arnedo³, Nuria Planell Picola², Amaia Vilas-Zornoza⁴, Larisa Morales-Soto¹, Patxi San-Martin⁴, Borja Saez-Ochoa³, Felipe Prosper⁴, Jesper Tegner¹, David Gomez-Cabrero^{1,2,5*}

¹Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia

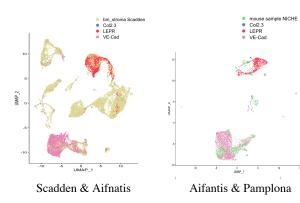
²Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain

³Centro de Investigacion Medica Aplicada and IDISNA, Pamplona, Spain

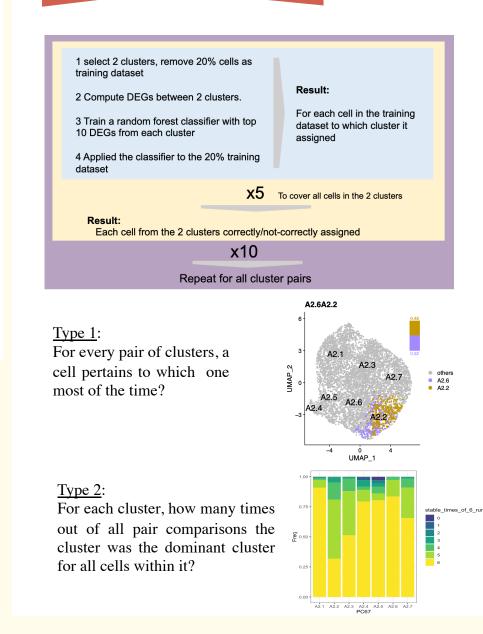
⁴Clinica Universidad de Navarra, Pamplona, Spain

⁵Mucosal and Salivary Biology Division, King's College London Dental Institute, London, SE1 9RT, United Kingdom

BACKGROUND

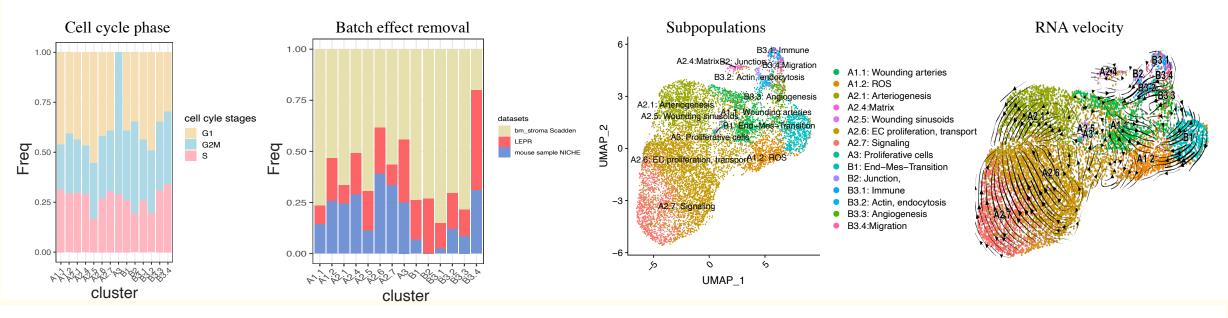

Hematopoiesis is tightly controlled by the bone marrow microenvironment, yet its cellular composition remains partially unresolved. To fully understand the regulation of hematopoiesis, it is essential to generate a complete taxonomy of the bone marrow microenvironment. Such a goal has been partially accomplished recently with the use of scRNA-seq technologies by several laboratories in parallel. However, in each of these studies, a different strategy for cell-type characterization was used; furthermore, the number of cells used did not exclude the existence of additional sub-types.

Datasets

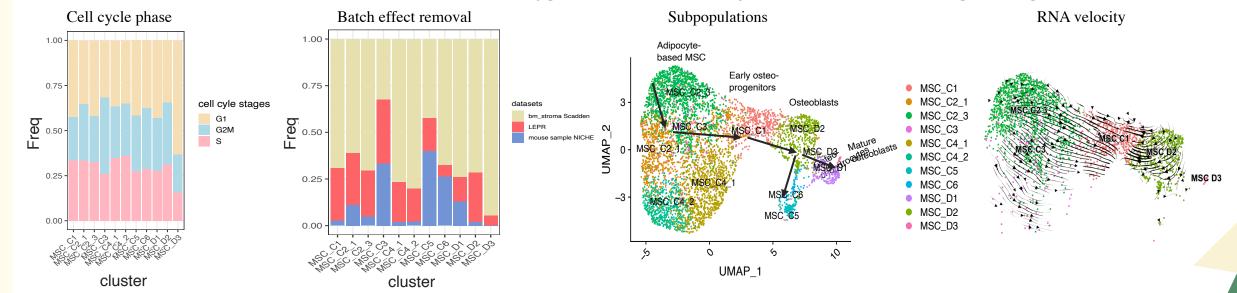

To facilitate the identification of cell subtypes, cellular states and differentiation trajectories, we integrated three datasets (publicly available and own generated) separately for two well-defined populations, which are mesenchymal (MSCs) and endothelial cells (ECs). To verified the findings in human, 4 human bone marrow niche scRNA-seq samples were collected in addition.

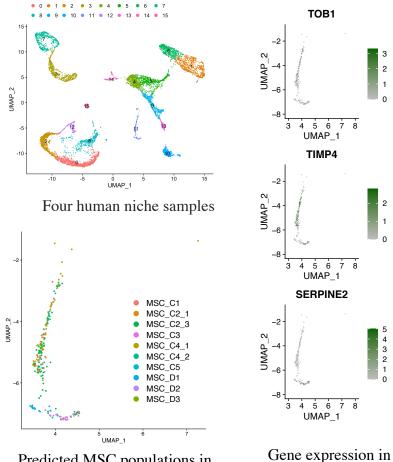
METHODS

- 1) Pairwise integration and select target cells
- 2) Integrate separately and perform clustering
- 3) Cluster evaluation with bootstrapping strategy, cell cycle phase, batch effect removal
- 4) Biological annotation considering markers, functional analysis and cytokines



CLUSTER EVALUATION




Result 1: Mouse ECs. Integration of independent experimental datasets defines new murine EC states.

Result 2: Mouse MSCs. RNA velocity predicts the differentiation trajectories from MSCs toward osteogenic lineages.

RESULTS

Predicted MSC populations in human from Seurat label transfer.

Result 3: Human

Conservation of composition and lineage differentiation patterns in the human BM mesenchymal compartment.

human MSCs

CONCLUSIONS

- For each population, by leveraging on multiple-data-set integration, we identified and characterized previously unrecognized cell types and intermediate cell states.
- We evaluated the statistical robustness of the novel subpopulations by adapting an existing bootstrapping strategy.
- We examined whether the newly identified subtypes are conserved in the human bone marrow microenvironment.
- As an example: similarities between species were identified in the differentiation patterns of mesenchymal stem cells.

REFERENCES

- Tasic, Bosiljka, et al. "Adult mouse cortical cell taxonomy revealed by single cell transcriptomics." *Nature neuroscience* 19.2 (2016): 335-346.
- Baryawno, Ninib, et al. "A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia." *Cell* 177.7 (2019): 1915-1932.
- Tikhonova, Anastasia N., et al. "The bone marrow microenvironment at singlecell resolution." *Nature* 569.7755 (2019): 222-228.

jin.ye@kaust.edu.sa