CellRank for directed single-cell fate mapping

Marius Lange^{1,2}, Volker Bergen^{1,2}, Michal Klein¹, Manu Setty³, Bernhard Reuter^{4,5}, Mostafa Bakhti^{6,7}, Heiko Lickert^{6,7}, Meshal Ansari^{1,8}, Janine Schniering⁸, Herbert B. Schiller⁸, Dana Pe'er^{3*}, Fabian J. Theis^{1,2,9*}

Institute of Computational Biology, Institute of Diabetes and Regeneration Research and Institute of Lung Biology and Disease @ Helmholtz Munich, Program for Computational and Systems Biology @ MSKCC New York, Department of Computer Science @ University of Tübingen

Emerging technologies in single-cell research virtual edition 2020

Single cell RNA-seq and computational tools uncover lineage relationships a ໌ 2 1

Top panel taken from Haghverdi et al., Nature Methods (2016) Data from Bastidas-Ponce et al., Development (2019)

CellRank combines RNA Velocity with transcriptomic similarity to robustly model cellular fate establishment

for each cell i, combine velocity with similarity to define transition probabilities

Coarse-grain the large transition matrix to reduce the system to it's essence

CellRank delineates fate choice in pancreatic development

